Estimating aboveground carbon stocks of a forest affected by mountain pine beetle inIdaho using lidar and multispectral imagery

نویسندگان

  • Benjamin C. Bright
  • Jeffrey A. Hicke
  • Andrew T. Hudak
چکیده

Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery" (2012). USDA Forest Service / UNL Faculty Publications. Paper 215. a b s t r a c t a r t i c l e i n f o Keywords: Carbon Mountain pine beetle Insect outbreak Tree mortality Aerial imagery Lidar Mountain pine beetle outbreaks have caused widespread tree mortality in North American forests in recent decades, yet few studies have documented impacts on carbon cycling. In particular, landscape scales intermediate between stands and regions have not been well studied. Remote sensing is an effective tool for quantifying impacts of insect outbreaks on forest ecosystems at landscape scales. In this study, we developed and evaluated methodologies for quantifying aboveground carbon (AGC) stocks affected by mountain pine beetle using field observations, lidar data, and multispectral imagery. We evaluated methods at two scales, the plot level and the tree level, to ascertain the capability of each for mapping AGC impacts of bark beetle infestation across a forested landscape. In 27 plots across our 5054-ha study area in central Idaho, we measured tree locations , health, diameter, height, and other relevant attributes. We used allometric equations to estimate AGC content of individual trees and, in turn, summed tree AGC estimates to the plot level. Tree-level and plot-level AGC were then predicted from lidar metrics using separate statistical models. At the tree level, cross-validated additive models explained 50–54% of the variation in tree AGC (root mean square error (RMSE) values of 26–42 kg AGC, or 32–48%). At the plot level, a cross-validated linear model explained 84% of the variation in plot AGC (RMSE of 9.2 Mg AGC/ha, or 12%). To map beetle-caused tree mortality, we classified high-resolution digital aerial photography into green, red, and gray tree classes with an overall accuracy of 87% (kappa= 0.79) compared with our field observations. We then combined the multispectral classification with lidar-derived AGC estimates to quantify the amount of AGC within beetle-killed trees at the field plots. Errors in classification, apparent tree lean caused by off-nadir aerial imagery, and a bias between percent cover and percent AGC reduced accuracy when combining multispectral and lidar products. Plot-level models estimated total plot AGC more accurately than tree-level models summed for plots as determined by RMSE (9.2 versus 21 Mg AGC/ha, respectively) and mean bias error (0.52 versus −6.7 Mg AGC/ha, respectively). …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Dynamics in Central US Rockies Lodgepole Pine Type After Mountain Pine Beetle Outbreaks

Mountain pine beetle-caused tree mortality has substantially changed live tree biomass in lodgepole pine ecosystems in western North America since 2000. We studied how beetle-caused mortality altered ecosystem carbon (C) stocks and productivity using a central US Rockies age sequence of ecosystem recovery after infestation, augmented with growth-and-yield model simulations. Field measurements s...

متن کامل

Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland

Mapping the regional distribution of forest canopy height and aboveground biomass is worthwhile and necessary for estimating the carbon stocks on Earth and assessing the terrestrial carbon flux. In this study, we produced maps of forest canopy height and the aboveground biomass at a 30 m spatial resolution in Maryland by combining Geoscience Laser Altimeter System (GLAS) data and Landsat spectr...

متن کامل

Evaluating Satellite Imagery for Estimating Mountain Pine Beetle-Caused Lodgepole Pine Mortality: Current Status

Spatial accuracy in the detection and monitoring of mountain pine beetle populations is an important aspect of both forest research and management. Using ground-collected data, classification models to predict mountain pine beetle-caused lodgepole pine mortality were developed for Landsat TM, ETM+, and IKONOS imagery. Our results suggest that low-resolution imagery such as Landsat TM (30 m) is ...

متن کامل

Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi-Temporal LiDAR Datasets

Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks) projects, w...

متن کامل

Estimating biomass of individual pine trees using airborne lidar

Airborne lidar (Light Detection And Ranging) is a proven technology that can be used to accurately assess aboveground forest biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings typical for loblolly pine stands (Pinus taeda L.) in the sou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013